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Abstract. Matrix multivariate Pearson type II-Riesz distribution is defined
and some of its properties are studied. In particular, the associated matrix
multivariate beta distribution type I is derived. Also the singular values and
eigenvalues distributions are obtained.

1. Introduction

When a new statistic theory is proposed, the statistician known well about the
rigorously mathematical foundations of their discipline, however in order to reach
a wider interdisciplinary public, some of the classical statistical techniques have
been usually published without explaining the supporting abstract mathematical
tools which governs the approach. For example, in the context of the distribution
theory of random matrices, in the last 20 years, a number of more abstract and
mathematical approaches have emerged for studying and generalizing the usual
matrix variate distributions. In particular, this needing have appeared recently
in the generalization, by using abstract algebra, of some results of real random
matrices to another supporting fields, such as complex, quaternion and octonion,
see [26], [27], [12], [15], among many others authors. Studying distribution theory
by another algebras, beyond real, have led several generalizations of substantial
understanding in the theoretical context, and we expect that it is more extensively
applied when a an improvement of its unified potential can be explored in other
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contexts. Two main tendencies have been considered in literature, Jordan algebras
and real normed division algebras. Some works dealing the first approach are due to
[14], [24], [3], [19], [20, 21], [23], and the references therein, meanwhile, the second
technique has been studied by [16], [7], [4, 5, 6], among many others.

In the same manner, different generalizations of the multivariate statistical anal-
ysis have been proposed recently. This generalized technique studies the effect of
changing the usual matrix multivariate normal support by a general matrix mul-
tivariate family of distributions, such as the elliptical contoured distributions (or
simply, matrix multivariate elliptical distributions), see [13] and [18]. This fam-
ily of distributions involves a number of known matrix multivariate distributions
such as normal, Kotz type, Bessel, Pearson type II and VII, contaminated normal
and power exponential, among many others. Two important properties of these
distributions must be emphasized:

i) Matrix multivariate elliptical distributions provide more flexibility in the sta-
tistical modeling by including distributions with heavier or lighter tails and/or
greater or lower degree of kurtosis than matrix multivariate normal distribution;

ii) Most of the statistical tests based on matrix multivariate normal distribution
are invariant under the complete family of matrix multivariate elliptical distribu-
tions.

Recently, a slight combination of these two theoretical generalizations have ap-
peared in literature; namely, Jordan algebras has been led to the matrix multivariate
Riesz distribution and its associated beta distribution. [6] proved that the above
mentioned distributions can be derived from a particular matrix multivariate ellip-
tical distribution, termed matrix multivariate Kotz-Riesz distribution. Similarly,
matrix multivariate Riesz distribution is also of interest from the mathematical
point of view; in fact most of their basic properties under the structure theory of
normal j-algebras and the theory of Vinberg algebras in place of Jordan algebras
have been studied by [22] and [2], respectively.

In this scenario, we can now propose a generalization of the matrix multivariate
beta, T and Pearson type II distributions based on a matrix multivariate Kotz-
Riesz distribution. As usual in the normal case, extensions of beta, T and Pearson
type II distributions involves two alternatives, the matrix variate and the matrix
multivariate versions1, see [4, 5, 6], [7, 8, 9] and [10].

This article derives the matrix multivariate beta and Pearson type II distribu-
tions obtained from a matrix multivariate Kotz-Riesz distribution and some of their
basic properties are studied. Section 2 gives some basic concepts and the notation of
abstract algebra, Jacobians and distribution theory. The nonsingular central matrix
multivariate Pearson type II-Riesz distribution and the corresponding generalized
matrix multivariate beta type I distribution are studied in Section 3. Finally, the
joint densities of the singular values are derived in Section 4.

1The term matricvariate distribution was first introduced [11], but the expression matrix-variate
distribution or matrix variate distribution or matrix multivariate distribution was later used to
describe any distribution of a random matrix, see [17] and [18], and the references therein. When
the density function of a random matrix is written including the trace operator then the matrix
multivariate designation shall be used.
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2. Preliminary results

A detailed discussion of real normed division algebras can be found in [1] and
[25]. For your convenience, we shall introduce some notation, although in general,
we adhere to standard notation forms.

For our purposes: Let F be a field. An algebra A over F is a pair (A;m), where
A is a finite-dimensional vector space over F and multiplication m : A × A → A is
an F-bilinear map; that is, for all λ ∈ F, x, y, z ∈ A,

m(x, λy + z) = λm(x; y) +m(x; z)
m(λx+ y; z) = λm(x; z) +m(y; z).

Two algebras (A;m) and (E;n) over F are said to be isomorphic if there is an
invertible map φ : A→ E such that for all x, y ∈ A,

φ(m(x, y)) = n(φ(x), φ(y)).

By simplicity, we write m(x; y) = xy for all x, y ∈ A.
Let A be an algebra over F. Then A is said to be
(1) alternative if x(xy) = (xx)y and x(yy) = (xy)y for all x, y ∈ A,
(2) associative if x(yz) = (xy)z for all x, y, z ∈ A,
(3) commutative if xy = yx for all x, y ∈ A, and
(4) unital if there is a 1 ∈ A such that x1 = x = 1x for all x ∈ A.
If A is unital, then the identity 1 is uniquely determined.
An algebra A over F is said to be a division algebra if A is nonzero and xy =

0A ⇒ x = 0A or y = 0A for all x, y ∈ A.
The term “division algebra", comes from the following proposition, which shows

that, in such an algebra, left and right division can be unambiguously performed.
Let A be an algebra over F. Then A is a division algebra if, and only if, A is

nonzero and for all a, b ∈ A, with b 6= 0A, the equations bx = a and yb = a have
unique solutions x, y ∈ A.

In the sequel we assume F = < and consider classes of division algebras over <
or “real division algebras" for short.

We introduce the algebras of real numbers <, complex numbers C, quaternions
H and octonions O. Then, if A is an alternative real division algebra, then A is
isomorphic to <, C, H or O.

Let A be a real division algebra with identity 1. Then A is said to be normed if
there is an inner product (·, ·) on A such that

(xy, xy) = (x, x)(y, y) for all x, y ∈ A.

If A is a real normed division algebra, then A is isomorphic <, C, H or O.
There are exactly four normed division algebras: real numbers (<), complex

numbers (C), quaternions (H) and octonions (O), see [1]. We take into account
that should be taken into account, <, C, H and O are the only normed division
algebras; furthermore, they are the only alternative division algebras.

Let A be a division algebra over the real numbers. Then A has dimension either
1, 2, 4 or 8. Finally, observe that
< is a real commutative associative normed division algebra,
C is a commutative associative normed division algebra,
H is an associative normed division algebra,
O is an alternative normed division algebra.
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Let Lβn,m be the set of all n×m matrices of rank m ≤ n over A with m distinct
positive singular values, where A denotes a real finite-dimensional normed division
algebra. Let An×m be the set of all n × m matrices over A. The dimension of
An×m over < is βmn. Let A ∈ An×m, then A∗ = ĀT denotes the usual conjugate
transpose.

Table 1 sets out the equivalence between the same concepts in the four normed
division algebras.

Table 1. Notation

Real Complex Quaternion Octonion Generic
notation

Semi-orthogonal Semi-unitary Semi-symplectic Semi-exceptional
type Vβm,n

Orthogonal Unitary Symplectic Exceptional
type Uβ(m)

Symmetric Hermitian Quaternion
hermitian

Octonion
hermitian Sβm

We denote by Sβ
m the real vector space of all S ∈ Am×m such that S = S∗. In

addition, let Pβ
m be the cone of positive definite matrices S ∈ Am×m. Thus, Pβ

m

consist of all matrices S = X∗X, with X ∈ Lβn,m; then Pβ
m is an open subset of

Sβ
m.
Let Dβ

m consisting of all D ∈ Am×m, D = diag(d1, . . . , dm). Let TβU (m) be
the subgroup of all upper triangular matrices T ∈ Am×m such that tij = 0 for
1 < i < j ≤ m. Let Z ∈ Lβn,m, define the norm of Z as ||Z|| =

√
tr Z∗Z.

For any matrix X ∈ An×m, dX denotes the matrix of differentials (dxij). Finally,
we define the measure or volume element (dX) when X ∈ An×m,Sβ

m, Dβ
m or Vβm,n,

see [7] and [9].
If X ∈ An×m then (dX) (the Lebesgue measure in An×m) denotes the exterior

product of the βmn functionally independent variables

(dX) =
n∧
i=1

m∧
j=1

dxij where dxij =
β∧
k=1

dx
(k)
ij .

If S ∈ Sβ
m (or S ∈ TβU (m) with tii > 0, i = 1, . . . ,m) then (dS) (the Lebesgue

measure in Sβ
m or in TβU (m)) denotes the exterior product of the exterior product

of the m(m− 1)β/2 +m functionally independent variables,

(dS) =
m∧
i=1

dsii

m∧
i>j

β∧
k=1

ds
(k)
ij .

Observe, that for the Lebesgue measure (dS) defined thus, it is required that S ∈
Pβ
m, that is, S must be a non singular Hermitian matrix (Hermitian definite positive

matrix).
If Λ ∈ Dβ

m then (dΛ) (the Legesgue measure inDβ
m) denotes the exterior product

of the βm functionally independent variables

(dΛ) =
n∧
i=1

β∧
k=1

dλ
(k)
i .
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If H1 ∈ Vβm,n then

(H∗1dH1) =
m∧
i=1

n∧
j=i+1

h∗jdhi.

where H = (H∗1|H∗2)∗ = (h1, . . . ,hm|hm+1, . . . ,hn)∗ ∈ Uβ(n). It can be proved
that this differential form does not depend on the choice of the H2 matrix. When
n = 1; Vβm,1 defines the unit sphere in Am. This is, of course, an (m − 1)β-
dimensional surface in Am. When n = m and denoting H1 by H, (HdH∗) is
termed the Haar measure on Uβ(m).

The surface area or volume of the Stiefel manifold Vβm,n is

(1) Vol(Vβm,n) =
∫

H1∈Vβm,n
(H1dH∗1) = 2mπmnβ/2

Γβm[nβ/2]
,

where Γβm[a] denotes the multivariate Gamma function for the space Sβ
m and is

defined as

Γβm[a] =
∫

A∈Pβm
etr{−A}|A|a−(m−1)β/2−1(dA)

= πm(m−1)β/4
m∏
i=1

Γ[a− (i− 1)β/2],

and Re(a) > (m−1)β/2. This can be obtained as a particular case of the generalized
gamma function of weight κ for the space Sβ

m with κ = (k1, k2, . . . , km) ∈ <m,
taking κ = (0, 0, . . . , 0) ∈ <m and which for Re(a) ≥ (m − 1)β/2 − km is defined
by, see [16] and [14],

Γβm[a, κ] =
∫

A∈Pβm
etr{−A}|A|a−(m−1)β/2−1qκ(A)(dA)(2)

= πm(m−1)β/4
m∏
i=1

Γ[a+ ki − (i− 1)β/2]

= [a]βκΓβm[a],(3)

where etr(·) = exp(tr(·)), | · | denotes the determinant, and for A ∈ Sβ
m

(4) qκ(A) = |Am|km
m−1∏
i=1
|Ai|ki−ki+1

with Ap = (ars), r, s = 1, 2, . . . , p, p = 1, 2, . . . ,m is termed the highest weight
vector, see [16], [14] and [19]; And, [a]βκ denotes the generalized Pochhammer symbol
of weight κ, defined as

[a]βκ =
m∏
i=1

(a− (i− 1)β/2)ki

=
πm(m−1)β/4

m∏
i=1

Γ[a+ ki − (i− 1)β/2]

Γβm[a]

= Γβm[a, κ]
Γβm[a]

,
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where Re(a) > (m− 1)β/2− km and

(a)i = a(a+ 1) · · · (a+ i− 1),

is the standard Pochhammer symbol.
Additional, note that, if κ = (p, . . . , p), then qκ(A) = |A|p. In particular if

p = 0, then qκ(A) = 1. If τ = (t1, t2, . . . , tm), t1 ≥ t2 ≥ · · · ≥ tm ≥ 0, then
qκ+τ (A) = qκ(A)qτ (A), and in particular if τ = (p, p, . . . , p), then qκ+τ (A) ≡
qκ+p(A) = |A|pqκ(A). Finally, for B ∈ TβU (m) in such a manner that C =
B∗B ∈ Sβ

m, qκ(B∗AB) = qκ(C)qκ(A), and qκ(B∗−1AB−1) = (qκ(C))−1qκ(A) =
q−κ(C)qκ(A), see [21].

Finally, the following Jacobians involving the β parameter, reflects the gener-
alized power of the algebraic technique; the can be seen as extensions of the full
derived and unconnected results in the real, complex or quaternion cases, see [14]
and [7]. These results are the base for several matrix and matrix variate generalized
analysis.

Proposition 2.1. Let X and Y ∈ Lβn,m be matrices of functionally independent
variables, and let Y = AXB + C, where A ∈ Lβn,n, B ∈ Lβm,m and C ∈ Lβn,m are
constant matrices. Then

(5) (dY) = |A∗A|mβ/2|B∗B|mnβ/2(dX).

Proposition 2.2 (Singular Value Decomposition, SV D). Let X ∈ Lβn,m be matrix
of functionally independent variables, such that X = W1DV∗ with W1 ∈ Vβm,n,
V ∈ Uβ(m) and D = diag(d1, · · · , dm) ∈ D1

m, d1 > · · · > dm > 0. Then

(6) (dX) = 2−mπ%
m∏
i=1

d
β(n−m+1)−1
i

m∏
i<j

(d2
i − d2

j )β(dD)(V∗dV)(W∗
1dW1),

where

% =


0, β = 1;

−m, β = 2;
−2m, β = 4;
−4m, β = 8.

Proposition 2.3. Let X ∈ Lβn,m be matrix of functionally independent variables,
and write X = V1T, where V1 ∈ Vβm,n and T ∈ TβU (m) with positive diagonal
elements. Define S = X∗X ∈ Pβ

m. Then

(7) (dX) = 2−m|S|β(n−m+1)/2−1(dS)(V∗1dV1).

Finally, to define the matrix multivariate Pearson type II-Riesz distribution we
need to recall the following two definitions of Kotz-Riesz and Riesz distributions.

From [6].

Definition 2.1. Let Σ ∈ Φβ
m, Θ ∈ Φβ

n, µ ∈ Lβn,m and κ = (k1, k2, . . . , km) ∈ <m.
And let Y ∈ Lβn,m and U(B) ∈ TβU (n), such that B = U(B)∗ U(B) is the Cholesky
decomposition of B ∈ Sβ

m. Then it is said that Y has a Kotz-Riesz distribution of
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type I and its density function is

βmnβ/2+
∑m

i=1
kiΓβm[nβ/2]

πmnβ/2Γβm[nβ/2, κ]|Σ|nβ/2|Θ|mβ/2
× etr

{
−β tr

[
Σ−1(Y− µ)∗Θ−1(Y− µ)

]}
× qκ

[
U(Σ)∗−1(Y− µ)∗Θ−1(Y− µ)U(Σ)−1] (dY)

(8)

with Re(nβ/2) > (m− 1)β/2− km; denoting this fact as

Y ∼ KRβ,In×m(κ,µ,Θ,Σ).

From [19] and [4] we have

Definition 2.2. Let Ξ ∈ Φβ
m and κ = (k1, k2, . . . , km) ∈ <m. Then it is said that

V has a Riesz distribution of type I if its density function is

(9) βam+
∑m

i=1
ki

Γβm[a, κ]|Ξ|aqκ(Ξ)
etr{−βΞ−1V}|V|a−(m−1)β/2−1qκ(V)(dV),

for V ∈ Pβ
m and Re(a) ≥ (m−1)β/2−km; denoting this fact as V ∼ Rβ,Im (a, κ,Ξ).

3. Matrix multivariate Pearson type II-Riesz distribution

A detailed discussion of Riesz distribution may be found in [19] and [4]. In
addition the Kotz-Riesz distribution is studied in detail in [6]. For convenience, we
adhere to standard notation stated in [4, 6].

Theorem 3.1. Let
(
S

1/2
1

)2
= S1 ∼ Rβ,I1 (νβ/2, k, 1), k ∈ < and Re(νβ/2) > −k;

independent of Y ∼ KRβ,In×m(τ,0, In, Im), Re(nβ/2) > (m−1)β/2−tm. In addition,
define R = S−1/2Y where S = S1 + ||Y||2. Then

S ∼ Rβ,I1 ((ν +mn)β/2 +
m∑
i=1

ti, k, 1)

is independent of R. Furthermore, the density of R is
(10)

Γβm[nβ/2]Γβ1 [(ν +mn)β/2 + k +
∑m
i=1 ti]

πβmn/2Γβm[nβ/2, τ ]Γβ1 [νβ/2 + k]
(
1− ||R||2

)νβ/2+k−1
qτ (R∗R) (dR),

where
(
1− ||R||2

)
> 0; which is termed the standardized matrix multivariate Pear-

son type II-Riesz type distribution and is denoted as
R ∼ PIIR

β,I
m×n(ν, k, τ, 1,0, In, Im).

Proof. From definition 2.1 and 2.2, the joint density of S1 and Y is

∝ sβν/2+k−1
1 etr

{
−β
(
s1 + ||Y||2

)}
qτ (Y∗Y) (ds1)(dY)

where the constant of proportionality is

c = βνβ/2+k

Γβ1 [νβ/2 + k]
· β

mnβ/2+
∑m

i=1
ti Γβm[nβ/2]

πmnβ/2Γβm[nβ/2, τ ]
.

Making the change of variable S = S1 − ||Y||2 and Y = S
1/2
1 R, by (5)

(ds1) ∧ (dY) = sβmn/2(ds) ∧ (dR).
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Now, observing that S = S1− ||Y||2 = S
(
1− ||R||2

)
, the joint density of S and R

is
∝
(
1− ||R||2

)βν/2+k−1
sβν/2+k−1 etr {−βs} qτ (sR∗R) (ds)(dR).

Also, note that

qτ (sR∗R) = qτ

(
(s1/2Im)R∗R(s1/2Im)

)
= qτ (sIm) qτ (R∗R) = s

∑m

i=1
tiqτ (R∗R) .

From where, the joint density of S and R is given by

β(ν+mn)β/2+k+
∑m

i=1
ti

Γβ1 [(ν +mn)β/2 + k +
∑m
i=1 ti]

etr {−βs} s(ν+mn)β/2+k+
∑m

i=1
ti−1(ds)

×
Γβm[nβ/2]Γβ1 [(ν +mn)β/2 + k +

∑m
i=1 ti]

πβmn/2Γβm[nβ/2, τ ]Γβ1 [νβ/2 + k]
(
1− ||R||2

)νβ/2+k−1
qτ (R∗R) (dR),

which shows that

S ∼ Rβ,I1 ((ν +mn)β/2 +
m∑
i=1

ti, k, 1),

and is independent of R, where R has the density (10).
�

The following is an immediate consequence of the previous result.

Corollary 3.1. Let R ∼ PIIR
β,I
m×n(ν, k, τ, 1,0, In, Im) and define

C = ρ−1/2 U(Θ)∗R U(Σ) + µ

where U(B) ∈ TβU (n), such that B = U(B)∗ U(B) is the Cholesky decomposition of
B ∈ Sβ

m, Θ ∈ Pβ
n, Σ ∈ Pβ

m, ρ > 0 constant and µ ∈ Lβn,m is a matrix of constants.
Then the density of S is

∝
(
1− ρ tr Σ−1(C− µ)∗Θ−1(C− µ)

)νβ/2+k−1

(11) × qτ
[
U(Σ)∗−1(C− µ)∗Θ−1(C− µ)U(Σ)−1] (dS)

where
(
1− ρ tr Σ−1(C− µ)∗Θ−1(C− µ)

)
> 0; with constant of proportionality

Γβm[nβ/2]Γβ1 [(ν +mn)β/2− k −
∑m
i=1 ti] ρ

mnβ/2−
∑m

i=1
ti

πβmn/2Γβm[nβ/2,−τ ]Γβ1 [νβ/2− k]|Σ|βn/2|Θ|βm/2
,

which is termed the matrix multivariate Pearson type II-Riesz distribution and is
denoted as C ∼ PIIR

β,I
m×n(ν, k, τ, ρ,µ,Θ,Σ).

Proof. Observe that R = ρ1/2 U(Θ)∗−1(C− µ)U(Σ)−1 and

(dR) = ρmnβ/2|Σ|−βn/2|Θ|−βm/2(dC).
The desired result is obtained making this change of variable in (10).

�
Next we derive the corresponding matrix multivariate beta type I distribution.

Theorem 3.2. Let
R ∼ PIIR

β,I
n×m(ν, k, τ, ρ,0, In,Σ),

and define B = R∗R ∈ Pβ
m, with n ≥ m. Then the density of B is,

(12) ∝ |B|(n−m+1)β/2−1(1− ρ tr Σ−1B)νβ/2+k−1qτ (B)(dB),
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where 1− ρ tr Σ−1B > 0; and with constant of proportionality

Γβ1 [(ν +mn)β/2 + k +
∑m
i=1 ti] ρ

βmn/2+
∑m

i=1
ti

Γβm[nβ/2, τ ]Γβ1 [νβ/2 + k]|Σ|nβ/1qτ (Σ)
.

B is said to have a non standardized matrix multivariate beta-Riesz type I distri-
bution.
Proof. The desired result follows from (10), by applying (7) and then (1); and
observing that

qτ (U(Σ)∗−1BU(Σ)−1) = q−τ (Σ)qτ (B).
�

In particular if Σ = Im in Theorem 3.2, we obtain:
Corollary 3.2. Let

R ∼ PIIR
β,I
n×m(ν, k, τ, 1,0, In, Im),

and define B = R∗R ∈ Pβ
m, with n ≥ m. Then the density of B is,

(13)
Γβ1 [(ν +mn)β/2 + k +

∑m
i=1 ti]

Γβm[nβ/2, τ ]Γβ1 [νβ/2 + k]
|B|(n−m+1)β/2−1(1− ρ tr B)νβ/2+k−1qτ (B)(dB),

where 1 − ρ tr B > 0. B is said to have a matrix multivariate beta-Riesz type I
distribution.
Remark 3.1. Observe that alternatively to classical definitions of generalized ma-
tricvariate beta function (for symmetric cones), see [5], [14] and [20], defined as

Bβm[a, κ; b, τ ] =
∫

0<S<Im
|B|b−(m−1)β/2−1qτ (B)|Im −B|a−(m−1)β/2−1qκ(Im −B)(dB)

=
∫

F∈Pβm
|F|b−(m−1)β/2−1qτ (F)|Im + F|−(a+b)q−(κ+τ)(Im + F)(dF)

= Γβm[a, κ]Γβm[b, τ ]
Γβm[a+ b, κ+ τ ]

,

where κ = (k1, k2, . . . , km) ∈ <m, τ = (t1, t2, . . . , tm) ∈ <m, Re(a) > (m −
1)β/2−km and Re(b) > (m−1)β/2− tm. From Corollary 3.2 and Díaz-García and
Gutiérrez-Sánchez [10, Theorem 3.3.1], we have the following alternative definition:
Definition 3.1. The matrix multivariate beta function is defined an denoted as:

B∗ βm [a, k; b, τ ] =
∫

1−tr B>0
|B|b−(m−1)β/2−1(1− tr B)a+k−1qτ (B)(dB)

=
∫

R∈Pβm
|F|b−(m−1)β/2−1(1 + tr F)−(a+mb+k+

∑m

i=1
ti)qτ (F)(dF)

= Γβ1 [a+ k]Γβm[b, τ ]
Γβ1 [a+mb+ k +

∑m
i=1 ti]

.

Also, observe that, when m = 1, then τ = t and κ = k and

Bβ1 [a, k; b, t] = Γβ1 [a+ k]Γβ1 [b+ t]
Γβ1 [a+ b+ k + t]

= B∗ β1 [a, k; b, t]

Finally observe that if in results in this section are defined k = 0 and τ = (0, . . . , 0),
the results in [8] are obtained as particular cases.
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4. Singular value densities

In this section, the joint densities of the singular values of random matrix
R ∼ PIIR

β,I
n×m(ν, k, τ, 1,0, In, Im) are derived. In addition, and as a direct conse-

quence, the joint density of the eigenvalues of matrix multivariate beta-Riesz type
I distribution is obtained for real normed division algebras.

Theorem 4.1. Let δ1, . . . , δm, 1 > δ1 > · · · > δm > 0, be the singular values of the
random matrix R ∼ PIIR

β,I
n×m(ν, k, τ, 1,0, In, Im). Then its joint density is

2mπβm2/2+%

Γβm[βm/2]B∗ βm [νβ/2, k;nβ/2, τ ]

m∏
i=1

(
δ2
i

)(n−m+1)β/2−1/2
(

1− ρ
m∑
i=1

δ2
i

)νβ/2+k−1

(14) ×
m∏
i<j

(
δ2
i − δ2

j

)β Cβτ (D2)
Cβτ (Im)

(
m∧
i=1

dδi

)
for 1 − ρ

∑m
i=1 δ

2
i > 0. Where % is defined in Lemma 2.2, D = diag(δ1, . . . , δm),

and Cβκ (·) denotes the zonal spherical functions or spherical polynomials, see [16]
and Faraut and Korányi [14, Chapter XI, Section 3].

Proof. This follows immediately from (10). First using (6), then applying (1) and
observing that, from [16, Equation 4.8(2) and Definition 5.3] and Faraut and Ko-
rányi [14, Chapter XI, Section 3], we have that for L ∈ Pβ

m,

Cβτ (Z) = Cβτ (Im)
∫

H∈Uβ(m)
qκ(HZH∗)(dH),

�
Finally, observe that δi =

√
eigi(R∗R), where eigi(A), i = 1, . . . ,m, denotes the

i-th eigenvalue of A. Let λi = eigi(R∗R) = eigi(B), observing that, for example,
δi =

√
λi. Then

m∧
i=1

dδi = 2−m
m∏
i=1

λ
−1/2
i

m∧
i=1

dλi,

the corresponding joint densities of λ1, . . . , λm, 1 > λ1 > · · · > λm > 0 is obtained
from (14) as

πβm
2/2+%

Γβm[βm/2]B∗ βm [νβ/2, k;nβ/2, τ ]

m∏
i=1

λ
(n−m+1)β/2−1
i

(
1−

m∑
i=1

λi

)νβ/2+k−1

×
m∏
i<j

(λi − λj)β
Cβτ (G)
Cβτ (Im)

(
m∧
i=1

dλi

)
for 1−

∑m
i=1 λi > 0, where G = diag(λ1, . . . , λm).

5. Conclusions

As visual examples, different Pearson type II-Riesz densities for m = 1 are
showed in figures 1 and 2,

72 archives.albanian-j-math.com/2015-03.pdf

http://albanian-j-math.com
http://archives.albanian-j-math.com/2015-03.pdf


Albanian J. Math. 9 (2015), no. 1, 63-75.

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
10

00
15

00
20

00
25

00
30

00

Pearson II−Riesz type density functions

x

f(
x)

k=6

k=4

k=2

Figure 1. With ν = 15, n = 18 and t = 7
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Figure 2. With ν = 3, n = 18 and k = 0
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Recall that in octonionic case, from the practical point of view, we most keep
in mind the fact from [1], there is still no proof that the octonions are useful for
understanding the real world. We can only hope that eventually this question will
be settled on one way or another. In addition, as is established in [14] and [28]
the result obtained in this article are valid for the algebra of Albert, that is when
hermitian matrices (S) or hermitian product of matrices (X∗X) are 3×3 octonionic
matrices.
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