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Abstract. The moduli space Mg of compact Riemann surfaces of genus g

has orbifold structure, and the set of singular points of such orbifold is the

branch locus Bg . Given a prime number p ≥ 7, Bg contains isolated strata

consisting of p-gonal Riemann surfaces for genera g ≥ 3(p−1)
2

, that are mul-

tiple of p−1
2

. This is a generalization of the results obtained in [BCI1] for

pentagonal Riemann surfaces, and the results of [K] and [CI3] for zero- and

one-dimensional isolated strata in the branch locus.

1. Introduction

In this article we study the topology of moduli spaces of Riemann surfaces. The
moduli space Mg of compact Riemann surfaces of genus g, being the quotient
of the Teichmüller space by the discontinuous action of the mapping class group,
has the structure of a complex orbifold, whose set of singular points is called the
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branch locus Bg. The branch locus Bg, g ≥ 3 consists of the Riemann surfaces with
symmetry, i. e. Riemann surfaces with non-trivial automorphism group; see [H]
and [B]. Bg admits an (equisymmetric) stratification where each stratum is given
by the symmetry of the surfaces in it, i.e. the conjugacy class in the mapping class
group of the automorphism group of the surfaces of the stratum ([B]).

Our goal is to study the topology of Bg through its connectedness, using this
equisymmetric stratification. The connectedness of moduli spaces of hyperelliptic,
p−gonal and real Riemann surfaces has been widely studied, for instance by [BSS],
[K] [CI1], [CI2], [CI3], [BCI2], [G], [S], [BCIP] and [BEMS].

Recently Bartolini, Costa and Izquierdo have shown that Bg is connected only
for genera 3, 4, 7, 13, 17, 19 and 59; see [BCI1] and [BCI2]. The authors found
isolated strata in Bg (g 6= 3, 4, 7, 13, 17, 19, 59) given by actions of order five and
seven. In [BI] it is shown that the strata induced by actions of order two and three
belongs to the same connected component of Bg.

A cyclic p-gonal Riemann surface X is a surface that admits a regular cover-
ing of degree p on the Riemann sphere. A 2-gonal Riemann surface is called an
hyperelliptic Riemann surface.

The main result in this article is that Bg contains isolated strata consisting of

p-gonal Riemann surfaces (p ≥ 7) of dimension d ≥ 2 for genus g = (d + 1)(p−12 ),
according to Riemann-Hurwitz’s formula.

Given two Riemann surfaces X1 and X2, there is a path of quasiconformal de-
formations taking X1 to X2 since Mg is connected. The result obtained in this
article says that if X1 belongs to one of the isolated strata and X2 has another type
of symmetry, then the path of quasiconformal deformations must contain surfaces
without symmetry.

The main result is a generalization of the results obtained in [BCI1] for isolated
strata of cyclic pentagonal Riemann surfaces, and of the results in [K], [CI3] for
isolated strata of dimension zero and one. As a consequence we give an infinite
family of genera for which Bg has an increasing number of isolated strata.

2. Riemann surfaces and Fuchsian groups

Let X be a Riemann surface and assume that Aut(X) 6= {1}. Hence X/Aut(X)
is an orbifold and there is a Fuchsian group Γ ≤ Aut(D), such that π1(X) C Γ and

D →X = D/π1(X)→ X/Aut(X) = D/Γ
where D = {z ∈ C : ‖z‖ < 1}.

If the Fuchsian group Γ is isomorphic to an abstract group with canonical pre-
sentation

(1)

〈
a1, b1, . . . , ag, bg, x1 . . . xk|xm1

1 = · · · = xmk

k =

k∏
i=1

xi

g∏
i=1

[ai, bi] = 1

〉
,

we say that Γ has signature

(2) s(Γ) = (g;m1, . . . ,mk).

The generators in presentation (1) will be called canonical generators.
Let X be a Riemann surface uniformized by a surface Fuchsian group Γg, i.e. a

group with signature (g;−). A finite group G is a group of automorphisms of X,
i.e. there is a holomorphic action a of G on X, if and only if there is a Fuchsian
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group ∆ and an epimorphism θa : ∆→ G such that ker θa = Γg. The epimorphism
θa is the monodromy of the covering fa : X → X/G = D/∆.

The relationship between the signatures of a Fuchsian group and subgroups is
given in the following theorem of Singerman:

Theorem 1. (Singerman [Si1]) Let Γ be a Fuchsian group with signature (2) and
canonical presentation (1). Then Γ contains a subgroup Γ′ of index N with signature

s(Γ′) = (h;m′11,m
′
12, ...,m

′
1s1 , ...,m

′
k1, ...,m

′
ksk

).

if and only if there exists a transitive permutation representation θ : Γ → ΣN
satisfying the following conditions:

1. The permutation θ(xi) has precisely si cycles of lengths less than mi, the
lengths of these cycles being mi/m

′
i1, ...,mi/m

′
isi

.
2. The Riemann-Hurwitz formula

µ(Γ′)/µ(Γ) = N.

where µ(Γ), µ(Γ′) are the hyperbolic areas of the surfaces D/Γ, D/Γ′.

For G, an abstract group isomorphic to all the Fuchsian groups of signature
s = (h;m1, ...,mk), the Teichmüller space of Fuchsian groups of signature s is

{ρ : G → PSL(2,R) : s(ρ(G)) = s}/ conjugation in PSL(2,R) = Ts.

The Teichmüller space Ts is a simply-connected complex manifold of dimension
3g − 3 + k. The modular group, M(Γ), of Γ, acts on T (Γ) as [ρ] → [ρ ◦ α] where
α ∈M(Γ). The moduli space of Γ is the quotient spaceM(Γ) = T (Γ)/M(Γ), then
M(Γ) is a complex orbifold and its singular locus is B(Γ), called the branch locus of
M(Γ). If Γg is a surface Fuchsian group, we denote Mg = Tg/Mg and the branch
locus by Bg. The branch locus Bg consists of surfaces with non-trivial symmetries
for g > 2.

If X/Aut(X) = D/Γ and genus(X) = g, then there is a natural inclusion i :
Ts → Tg : [ρ]→ [ρ′], where

ρ : G → PSL(2,R), π1(X) ⊂ G, ρ′ = ρ |π1(X): π1(X)→ PSL(2,R).

If we have π1(X) C G, then there is a topological action of a finite group G =
G/π1(X) on surfaces of genus g given by the inclusion a : π1(X)→ G. This inclusion
a : π1(X)→ G produces ia(Ts) ⊂ Tg.

The image of ia(Ts) by Tg →Mg is MG,a
, where MG,a

is the set of Riemann
surfaces with automorphisms group containing a subgroup acting in a topologically
equivalent way to the action of G on X given by the inclusion a, see [H], the subset

MG,a ⊂MG,a
is formed by the surfaces whose full group of automorphisms acts in

the topological way given by a. The branch locus, Bg, of the covering Tg →Mg can

be described as the union Bg =
⋃
G 6={1}M

G,a
, where {MG,a} is the equisymmetric

stratification of the branch locus [B]:

Theorem 2. (Broughton [B]) Let Mg be the moduli space of Riemann surfaces of
genus g, G a finite subgroup of the corresponding modular group Mg. Then:

(1) MG,a

g is a closed, irreducible algebraic subvariety of Mg.

(2) MG,a
g , if it is non-empty, is a smooth, connected, locally closed algebraic

subvariety of Mg, Zariski dense in MG,a

g .

There are finitely many strata MG,a
g .
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An isolated stratum MG,a in the above stratification is a stratum that satisfies
MG,a ∩MH,b

= ∅, for every group H and action b on surfaces of genus g. Thus

MG,a
=MG,a

Since each non-trivial group G contains subgroups of prime order, we have the
following remark:

Remark 3. (Cornalba [C])

Bg =
⋃

p prime

MCp,a

where MCp,a
is the set of Riemann surfaces of genus g with an automorphism

group containing Cp, the cyclic group of order p, acting on surfaces of genus g in
the topological way given by a.

3. Isolated strata of p-gonal Riemann surfaces

Definition 4. A Riemann surface X is said to be p-gonal if it admits a p-sheeted

covering f : X → Ĉ onto the Riemann sphere. If f is a cyclic regular covering
then X is called cyclic p-gonal. The covering f will be called the (cyclic) p-gonal
morphism.

A cyclic p-gonal Riemann surface admits an equation of the form yp = P (x).
By Lemma 2.1 in [A], if the surface Xg has genus g ≥ (p−1)2 + 1, then the p-gonal
morphism is unique.

We can characterize cyclic p-gonal Riemann surfaces using Fuchsian groups. Let Xg

be a Riemann surface, Xg admits a cyclic p-gonal morphism f if and only if there

is a Fuchsian group ∆ with signature (0;

2g
p−1+2︷ ︸︸ ︷
p, ..., p) and an index p normal surface

subgroup Γ of ∆, such that Γ uniformizes Xg; see [CI4], [CI].

We have the following algorithm to recognize cyclic p-gonal surfaces: A surface
Xg admits a cyclic p-gonal morphism f if and only if there is a Fuchsian group ∆
with signature (0;m1, ...,mr), an order p automorphism α : Xg → Xg, such that
〈α〉 ≤ G = Aut(Xg), and an epimorphism θ : ∆ → G with ker(θ) = Γ in such

a way that θ−1(〈α〉) is a Fuchsian group with signature (0;

2g
p−1+2︷ ︸︸ ︷
p, ..., p). Furthermore

the p-gonal morphism f is unique if and only if 〈α〉 is normal in G (see [G]), and
Wootton [W] has proved the following:

Lemma 5. (Wootton [W]) With the notation above. If G > Cp, then NG(Cp) > Cp.

Isolated strata MCp,a
= MCp,a of cyclic p-gonal surfaces correspond to maximal

actions of the cyclic group Cp. Isolated strata of dimension 0 where given [K],
isolated strata of dimension 1 were studied in [CI3]. We find here isolated strata of
any dimension, consisting of p-gonal surfaces also.

Theorem 6. Let p be a prime number at least seven and let d ≥ 2. Then there
are isolated strata of dimension d consisting of p-gonal surfaces in Bg if and only

if g = (d+ 1)(p−12 ).
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Proof. First of all, an equisymmetric stratum MCp,a in Bp of dimension d ≥ 2 of

p-gonal Riemann surfaces is given by a monodromy θ : ∆(0;

d+3︷ ︸︸ ︷
p, . . . , p) → Cp, with

∆ a Fuchsian group with maximal signature; see [Si2]. Then, a generic surface X
in MCp,a will have Cp = Aut(X). The dimension of the stratum is d = 2g−p+1

p−1 by

the Riemann-Hurwitz formula Thus g = (d+ 1)(p−12 ).
If a surface in the stratum has larger automorphism group G, then, by Lemma 5,
we can assume that Cp is normal in G by considering Cp < NG(Cp).

Let Xg, be a p-gonal surface, such that Xg ∈ M
Cp,a

g for some action a, let 〈α〉
be the group of p-gonal automorphisms of Xg. Consider an automorphism b ∈
Aut(X) \ 〈α〉, by Lemma 5 and [G], b induces an automorphism b̂ of order t ≥ 2 on

the Riemann sphere Xg/〈a〉 = Ĉ according to the following diagram

Xg = D/Γg
b→ Xg = D/Γg

fa ↓ ↓ fa
Xg/〈α〉 = Ĉ(P1, . . . , Pk)

b̂→ Xg/〈α〉 = Ĉ(P1, . . . , Pk),

where Γg is a surface Fuchsian group and fa : Xg = D/Γg → Xg/〈α〉 is the p-
gonal morphism induced by the group of automorphisms 〈α〉 with action a. S =

{P1, . . . , Pk} is the branch set in Ĉ of the morphism fa with monodromy θa :
∆(0; p, d+3. . . , p) → Cp defined by θa(xi) = αri , where ri ∈ {1, . . . , p− 1} for 1 ≤ i ≤
d+ 3.

Now, b̂ induces a permutation on S that either takes singular points with mon-
odromy αj to points with monodromy αβ(j), with β an automorphism of Cp, or it
acts on each subset formed by points in S with same monodromy αrj .

We construct monodromies θ : ∆(0; p, d+3. . . , p)→ Cp = 〈α〉, where d = 2g
p−1−2 ≥ 2

by the Riemann-Hurwitz formula. We separate the monodromies in cases according
to the congruence of d modulus p.

(1) d ≡ r 6≡ 0, 2, p− 2, p− 1mod(p)
θ : ∆(0; p, d+3. . . , p)→ Cp is defined by
θ(xi) = α, 1 ≤ i ≤ d, θ(xd+1) = α2, θ(xd+2) = αp−2, θ(xd+3) = αp−r.

(2) d ≡ 0mod(p)
θ : ∆(0; p, d+3. . . , p)→ Cp is defined by
θ(xi) = α, 1 ≤ i ≤ d, θ(xd+1) = α3, θ(xd+2) = α5, θ(xd+3) = αp−8.

(3) d ≡ 2mod(p)
θ : ∆(0; p, d+3. . . , p)→ Cp is defined by
θ(xi) = α, 1 ≤ i ≤ d, θ(xd+1) = α3, θ(xd+2) = αp−3, θ(xd+3) = αp−2.

(4) d ≡ p− 2mod(p)
θ : ∆(0; p, d+3. . . , p)→ Cp is defined by
θ(xi) = α, 1 ≤ i ≤ d, θ(xd+1) = α3, θ(xd+2) = αp−3, θ(xd+3) = α2.

(5) d ≡ p− 1mod(p)
θ : ∆(0; p, d+3. . . , p)→ Cp is defined by
θ(xi) = α, 1 ≤ i ≤ d, θ(xd+1) = α4, θ(xd+2) = α5, θ(xd+3) = αp−8.

(Notice that p− 8 = 6 when p = 7 in cases 2 and 5)

We see that the given epimorphisms force b̂ to be the identity on Ĉ. Thus, the
surfaces Xg do not admit a larger group of automorphisms than Cp = 〈α〉 and the
equisymmetric strata given by the monodromies above are isolated.

c©2012Albanian J. Math. 15
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�

Theorem 6 generalizes de results obtained in [BCI1] for isolated strata of pentag-
onal Riemann surfaces, the results in [CI3] for one-dimensional isolated strata, and
the results in [K] for isolated Riemann surfaces. Kulkarni [K] showed that a branch
locus Bg contains isolated Riemann surfaces if and only if g = 2 or g = p−1

2 , with
p ≥ 11 a prime number. The isolated Riemann surfaces are cyclic p-gonal surfaces.
Costa and Izquierdo [CI3] showed that Bg contains one-dimensional isolated strata
if and only if g = p− 1, with p ≥ 11 a prime number.

Remark 7. The isolated strata of heptagonal surfaces with dimension g
3 − 1 in Bg

obtained here are different of the isolated strata of heptagonal surfaces and dimen-
sion g

3 − 1 obtained in [BCI2] since the actions determined by the monodromies are
not topologically equivalent, see [H].

In [BCI1] we showed that Bg contains isolated strata of cyclic pentagonal surfaces
for all even genera greater or equal eighteen. In [BI] (see also [Bo] and [BCIP]) it
is shown that the B2 contains one isolated pentagonal Riemann surface and that
B4, B6 and B8 do not contain isolated strata of pentagonal Riemann surfaces. We
study the remaining branch loci in the following proposition:

Proposition 8.

(1) B10, B14 and B16 contain isolated strata of cyclic pentagonal Riemann sur-
faces.

(2) B12 does not contain isolated strata of cyclic pentagonal Riemann surfaces.

Proof. (1) Consider monodromies:
θ1 : ∆(0; 5, 7. . ., 5) → C5 = 〈α〉 defined by θ1(x1) = θ1(x2) = θ1(x3) =

α, θ1(x4) = α2, θ1(x5) = θ1(x6) = α3, θ1(x7) = α4,
θ2 : ∆(0; 5, 9. . ., 5)→ C5 = 〈α〉 defined by θ2(xi) = α, 1 ≤ i ≤ 6, θ2(x7) =

α2, θ2(x8) = α3, θ2(x9) = α4,
θ3 : ∆(0; 5, 10. . ., 5)→ C5 = 〈α〉 defined by θ3(x1) = α, θ3(x2) = α2, θ3(x3) =

· · · = θ3(x5)α3, θ3(x6) = · · · = θ3(x10) = α4

With the same argument as in Theorem 6 we see that θ1, θ2 and θ3
induce isolated strata in B10, B14 and B16 respectively.

(2) Case B12. The only possible monodromies θ : ∆(0, 5, 8. . ., 5) → C5 = 〈α〉
are, up to an automorphism of C5 and permuting the order of the generators
of ∆:

i) θ(x1) = · · · = θ(x5) = α, θ(x6) = α2, θ(x7) = θ(x8) = α4;
ii) θ(x1) = · · · = θ(x5) = α, θ(x6) = α4, θ(x7) = θ(x8) = α3;
iii) θ(x1) = · · · = θ(x4) = α, θ(x6) = · · · = θ(x8) = α4;
iv) θ(x1) = · · · = θ(x4) = α, θ(x5) = α2, θ(x6) = θ(x7) = θ(x8) = α4;
v) θ(x1) = · · · = θ(x4) = α, θ(x5) = α2, θ(x6) = θ(x7) = θ(x8) = α3;
vi) θ(x1) = · · · = θ(x4) = α, θ(x5) = θ(x6) = α2, θ(x7) = α3, θ(x8) =

α4;
vii) θ(x1) = θ(x2) = θ(x3) = α, θ(x4) = θ(x5) = θ(x6) = α2, θ(x7) =

θ(x8) = α3;
viii) θ(x1) = θ(x2) = θ(x3) = α, θ(x4) = α2, θ(x5) = α3, θ(x6) =

θ(x7) = θ(x8) = α4;

16 c©2012Albanian J. Math.
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ix) θ(x1) = θ(x2) = α, θ(x3) = θ(x4) = α2, θ(x5) = θ(x6) = α3, θ(x7) =
θ(x8) = α4.

With the argument in the proof of Theorem 6 the action of C5 on the pentagonal
surfaces D/Ker(θ) can be extended to the action of a larger group. For instance
the action of C5 in case ix) can be extended to an action of C10, D5 or C5 o C4.

�

Remark 9. Theorem 6 and Porposition 8 can be interpreted geometrically as fol-
lows: Let (X1

g , Cp) and (X2
g , G) be two Riemann surfaces with symmetry, where X1

belongs to one of the isolated strata of cyclic p-gonal surfaces in Bg and X2
g has

another symmetry. Then any path of quasiconformal deformations joining X1
g and

X2
g must contain surfaces without symmetry.

We consider the existence of several isolated equisymmetric strata in branch loci.
Let 5 ≤ p1 < p2 < · · · < pr be prime numbers. We define λ = l.c.m.(pi−12 )ri=1. As a
consequence of Theorem 6 , Theorem 3.6 in [K] and Theorem 5 in [CI3] we obtain:

Theorem 10. Let 5 ≤ p1 < p2 < · · · < pr be prime numbers. Then, for all g = k λ,
k ≥ 1 and g > 12, the branch locus Bg contains r isolated strata formed by cyclic
pi-gonal Riemann surfaces, 1 ≤ i ≤ r.

Proof. Observe that the conditions of Theorem 6 are satisfied if g ≥ 3
2 (pr − 1).

The conditions of Theorem 5 in [CI3] and Theorem 6 are satisfied if g = pr − 1.
Finally the conditions of Theorem 6, Theorem 5 in [CI3] and Theorem 3.6 in [K]
are satisfied if g = pr−1

2 . The dimension of the isolated strata of cyclic pi-gonal

surfaces is di = 2g
pi−1 − 1 by the Riemann-Hurwitz formula.

B12 does not contain isolated strata of cyclic pentagonal Riemann surfaces, it
contains isolated strata of cyclic heptagonal Riemann surfaces.

�

As a consequence we have:

Corollary 11. Given a number r ∈ N, there is an infinite number of genera g such
that Bg contains at least r isolated equisymmetric strata.

We finish with some examples for small genera.

3.1. Examples.

(1) By Theorem 5 in [CI3] and Proposition 8, B10 contains one isolated stra-
tum of cyclic pentagonal surfaces of dimension four, and one 1-dimensional
startum of cyclic 11-gonal surfaces.

(2) By Theorem 6 and Theorem 5 in [CI3], the smallest genus for which the
branch locus contains isolated strata of cyclic heptagonal and 13-gonal Rie-
mann surfaces is twelve.The dimensions of the isolated strata are 3 and 1
respectively.

(3) By Theorem 10, B20 contains both isolated strata of cyclic pentagonal and
11-gonal Riemann surfaces. The dimensions of the isolated strata are 9
and 3 respectively. By [K], B20 contains isolated Riemann surfaces that are
cyclic 41-gonal.

c©2012Albanian J. Math. 17
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(4) The smallest genus for which the branch locus contains both isolated strata
of cyclic heptagonal and 11-gonal Riemann surfaces is fifteen. The dimen-
sions of the isolated strata are 3 and 2 respectively. By [K], B15 contains
isolated Riemann surfaces that are cyclic 31-gonal.

(5) The smallest genus g for which the branch locus Bg contains both isolated
strata of cyclic pentagonal and heptagonal Riemann surfaces is eighteen.
The dimensions of the strata are 8 and 5 respectively. It contains also
isolated strata of cyclic 13-gonal Riemann surfaces of dimension 3. By
[CI3] and [K], B18 contains one-dimensional isolated strata of cyclic 19-
gonal surfaces and isolated cyclic 37-gonal Riemann surfaces.

(6) By Theorem 10, B24 contains isolated strata of cyclic pentagonal, hep-
tagonal, 13-gonal and 17-gonal Riemann surfaces. The dimensions of the
isolated strata are 11, 7, 3 and 2 respectively.

(7) The smallest genus for which the branch locus contains isolated strata of
cyclic pentagonal, heptagonal and 11-gonal Riemann surfaces is thirty, the
dimensions of these strata are 14, 9 and 5 respectively. By Theorem 10,
B30 contains also isolated strata of cyclic 13-gonal Riemann, surfaces with
dimension 4. By [CI3] and [K], B30 contains one-dimensional isolated strata
of cyclic 31-gonal surfaces and isolated cyclic 61-gonal Riemann surfaces.

(8) B60 contains isolated strata of cyclic pentagonal, heptagonal, 11-gonal, 13-
gonal, 31-gonal, 41-gonal, 61-gonal surfaces, with dimensions 29, 19, 11, 9,
3, 2 and 1 respectively.

(9) B1000 contains isolated strata of cyclic pentagonal, 11-gonal, 17-gonal, 41-
gonal, 101-gonal, 251-gonal and 401-gonal surfaces, with dimensions 499,
199, 124, 49, 19, 7 and 4 respectively.

(10) B2012 contains 1005-dimensional isolated strata of cyclic pentagonal sur-
faces.
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