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SOME COMPUTATION PROBLEMS ARISING IN FONTAINE THEORY

RADU GABA AND BENJAMIN JUSTUS

Abstract. In this note we construct special types of rings Amax,n which are used in sequel work to define
new types of families of continuous Fontaine sheaves. We also study the maps θn and qn providing explicit

description of their kernels. Finally, we implement an algorithm which leads to the computation of these

kernels.

1. Introduction

Let us fix a prime integer p and a finite extension K of Qp with residue field k and ring of integers OK
and denote by GK the Galois group of K over K where K is a fixed algebraic closure of K. Write K0 for the
maximal unramified extension of Qp in K. Also let X be a smooth, proper and connected scheme over K and
denote by XK the geometric generic fiber of X.

In order to decide the nature of the GK-representation Hi
et(XK ,Qp), i ≥ 0 one needs to use ”comparison

isomorphisms theorems” i.e. theorems comparing p-adic étale cohomology of XK to other cohomology theories
associated to X. For example, if X has good reduction the cohomology theory we refer to is the crystalline
cohomology of the special fiber of a smooth proper model of X over OK . Denote this special fiber by X.

The crystalline comparison conjecture was formulated by J.-M. Fontaine in [Fo1] and proved by G. Faltings
in [Fa]:

Theorem 1.1. For every i ≥ 0 there is a canonical isomorphism of Bcris-modules, which respects the GK-
actions, the Frobenii and the filtrations

Hi
et(XK ,Qp)⊗Qp Bcris

∼= Hi
cris(X/OK)⊗OK

Bcris,

where Bcris is the crystalline period ring defined by J.-M. Fontaine in [Fo1].
In [AI] a new method of attacking comparison isomorphisms is supplied provided K = K0 i.e. K is

unramified over Qp.
One defines the Faltings’s topology XK on the smooth proper model of X over OK (see [AI] for details).
A. Iovita and F. Andreatta are defining in [AI] new sheaves of rings A∇cris and Acris on XK and they prove

the following:

Theorem 1.2. Hi
et(XK ,Qp)⊗Qp

Bcris
∼= Hi(XK ,A∇cris)⊗Acris

Bcris
∼= Hi

cris(X,K0)⊗K0
Bcris.

This article deals with the construction of certain families of rings (Amax,n)n≥1, (A′max,n)n≥1. The construc-
tion of these rings are carried out in section 4. We study the maps θn, qn, q̄n and provide explicit description
of their kernels in section 3. In section 5, we discuss algorithms which allow us to compute the kernels of θn
and qn. The details of the computational experiments and relevant results are included in the same section.
We begin in section 2 by recalling some basic facts of Fontaine theory and set out the notations that are used
throughout the paper. In the appendix, the readers will find an algorithm which was used in the paper.

One uses the rings Amax,n to construct a family of sheaves of rings (A∇max,n)n≥1 on Faltings’s topology
XK associated to X and a smooth, proper model of it and study their properties, most important the lo-
calization over small affines (see [Ga] for details). The second family of rings namely (A′max,n)n≥1 is used to

define the sheaves of rings (A′∇max,n)n≥1 which are related to the first family of sheaves via the isomorphism

Received by the editors June 15, 2010 .
2000 Mathematics Subject Classification. Primary: 14F30; Secondary: 14F25.
Key words and phrases. Fontaine sheaves, p-adic cohomology, crystalline cohomology.

c©2010 Aulona Press (Albanian J. Math.)

213



214 RADU GABA AND BENJAMIN JUSTUS

A∇max,m/p
nA∇max,m

∼= A′∇max,n for m ≥ n+ 2 (see [Ga], Lemma 3.2.5) and which plays a key role in proving the
localization over small affines theorem (see [Ga], Theorem 3.2.7).

The rings Amax,n will also be used in sequel work to define a Riemann-Hilbert correspondence between
p-adic locally constant sheaves on X and F -isocrystals on the special fiber of the fixed smooth model of X
over OK .

The first four sections of the paper were written by the first author while the next three were the joint work
of both authors.

2. Notations and Background

Let us fix as before a prime integer p, a finite extension K of Qp with residue field k and an algebraic

closure of K, K with residue field k. Denote by GK the Galois group of K over K, by OK the ring of integers
of K and by OK the ring of integers of K. Also denote by CK the completion of K for the p-adic topology.
It is an algebraically closed field and it has a p-adic valuation v normalized by v(p) = 1.

One defines the Fp-algebra:

R := lim←−OK/pOK ,
where the inverse limit is taken with respect to Frobenius. An element x ∈ R is then a sequence (xn)n∈N

of elements of OK/pOK satisfying xpn+1 = xn for all n. R is a perfect Fp-algebra of characteristic p and one
has a bijection from lim←−OK to lim←−OK/pOK which is defined by

(x(n))n≥0 7→ (x(n)(modp)).

The inverse of the map is:

(xn)n≥0 7→ (x(n))n≥0,

where x(n) = limm→∞ x̂n+m
pm

for arbitrary lifts x̂i ∈ OK of xi ∈ OK/pOK for all i ≥ 0, the limit being
independent of the choice of the lifts (see [Fo2], 1.2.2]).

The laws of multiplication and addition are given by the following formulae: for any x, y ∈ R and n ∈ N,

(xy)(n) = x(n)y(n)

(x+ y)(n) = lim
m→∞

(x(n+m) + y(n+m))p
m

One gives R a valuation by defining vR(x) = v(x(0)) for all x ∈ R. One can prove that vR is a valuation on
R and that R is vR-adically separated and complete with residue field k (see [BC], Lemma 4.3.3]).

Now for positive integers n ≥ 1, let Wn := Wn(OK/pOK) be the ring of Witt vectors of length n (on
OK/pOK valued points). We have a ring homomorphism:

θn : Wn −→ OK/p
nOK

(s0, ..., sn−1) 7−→
n−1∑
i=0

pis̃i
pn−1−i

where s̃i ∈ OK/pnOK are lifts of si. Denote by un : Wn+1 → Wn the homomorphism defined by
Frobenius composed with the truncation map (i.e. un sends (s0, s1, ..., sn) to (sp0, s

p
1, ..., s

p
n−1)). Also let

vn : OK/pn+1OK → OK/pnOK be the truncation map. We have that θn ◦ un = vn ◦ θn+1 for every n.
Furthermore one has a GK-equivariant morphism:

θ : lim←−
un

Wn(OK/pOK)→ lim←−
vn

OK/p
nOK = OCK

The inverse limit of the projective system (Wn(OK/pOK), un)n∈N is identified with the ring of Witt vectors

W(R) which we denote by A+
inf .
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3. Explicit kernel descriptions

We remark that Wn(R) ∼= A+
inf/p

nA+
inf since R is perfect and since for each n the projection map

πn : A+
inf →Wn(R)

(s0, s1, ..., sn, ...) 7→ (s0, s1, ..., sn−1).

has the kernel equal to:

{(s0, s1, ...sn, ...) ∈ A+
inf | s0 = s1 = ... = sn−1 = 0} = pnA+

inf .

We now describe the kernels of the maps θ and θn. The explicit kernel computations and related issues can
be found in section 5.

Choose p̃ ∈ R such that p̃(0) = p (so p̃ = (p, p1/p, p1/p
2

, ...)), p̃(n) = p1/p
n

). Then the element ξ :=

[p̃]− p ∈ A+
inf is a generator of ker(θ) (see [BC], Proposition 4.4.3). Also denote by p̃n := [p1/p

n−1

] ∈ Wn the

Teichmueller lift of p1/p
n−1 ∈ OK/pOK and let ξn := p̃n − p ∈ Wn. Remark that the sequence ξ = {ξn}n is

compatible since un(ξn+1) = ξn for all n ≥ 1 and that ξn is a generator of ker(θn) because of the following
proposition.

Let us first make the identification OK/pOK = OCK
/pOCK

.

Proposition 1. The ideal ker(θn) ⊆Wn(OCK
/pOCK

) is the principal ideal generated by ξn.

Proof. We have the following commutative diagram:

W(R)

θ

��

πn // Wn(R)
qn,n−1 // Wn(OCK

/pOCK
)

θnvvmmmmmmmmmmmmm

OCK
// OCK

/pnOCK

where the bottom map is the reduction modulo pn and the map qn,n−1 : Wn(R)→Wn(OCK
/pOCK

) is given
by

(s0, s1, ..., sn−1)
qn,n−17−→ (s

(n−1)
0 (modp), s

(n−1)
1 (modp), . . . , s

(n−1)
n−1 (modp))

with (s0, s1, ..., sn−1) ∈ Wn(R). Denote by fn := qn,n−1 ◦ πn and remark that it is a surjective ring
homomorphism. We first prove that the map induced by θ at the level of kernels namely θ|ker(fn) : ker(fn)→
ker(modpn) is surjective. For this, let s ∈ ker(modpn) = pnOCK

so s = pn · t for some t ∈ OCK
. Since θ

is surjective, we have that t = θ(r) for some r ∈ W(R) and hence s = pn · θ(r) = θ(pn) · θ(r) = θ(pn · r).
Moreover, pn · r ∈ pnW(R) ⊂ ker(fn). It follows that θ|ker(fn) is surjective.

The inclusion pnW(R) ⊂ ker(fn) follows easily: let w := (w0, w1, ...) ∈ W(R). We then have that

pn · w = (0, ..., 0︸ ︷︷ ︸
n

, wp
n

0 , wp
n

1 , ...) ∈ pnW(R) and consequently fn(pn · w) = qn,n−1(πn(0, ..., 0︸ ︷︷ ︸
n

, wp
n

0 , wp
n

1 , ...)) =

qn,n−1(0, ..., 0) = (0, ..., 0) hence pn · w ∈ ker(fn).
We apply now the Snake Lemma in the above diagram and since coker(θ|ker(fn)) = 0 we obtain that

the map induced by fn at the level of kernels namely ker(θ) → ker(θn) is surjective. Consequently, since
ker(θ) ⊆ W(R) is the principal ideal generated by ξ ([BC], Proposition 4.4.3), one obtains that the ideal
ker(θn) ⊆Wn(OCK

/pOCK
) is principal and generated by fn(ξ) = ξn. �

The following two propositions are results quoted in [AI] and left as exercises. We give here the complete
proof.

Proposition 2. The kernel of the projection map

q̄n : R = lim←−OK/pOK → OK/pOK

on the n+ 1-th factor of the limit is generated by p̃p
n

.
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Proof. For this, let x = (xm)m≥0 ∈ R. Then q̄n sends (xm)m≥0 to xn.
Remark that since

vR(x) = v(x(0)) = v((x(n))p
n

) = pnv(x(n)) n ≥ 0,

then

vR(x) ≥ pn ⇔ v(x(n)) ≥ 1⇔ x(n)(modp) = 0.

One obtains in this way a better description of ker(q̄n)

ker(q̄n) = {x ∈ R/vR(x) ≥ pn} = {x ∈ R/x(n)(modp) = 0}.

Now since vR(p̃p
n

) = v(pp
n

) = pn, it is true that (p̃p
n

) ⊆ ker(q̄n). For the other inclusion, let x ∈ ker(q̄n).
Subsequently, v(x(0)) ≥ pn hence x(0) = pp

n

y(0), for some y(0) ∈ OK . Since (x(n))n is compatible we have

that (x(1))p = x(0) = pp
n

y(0) and one obtains x(1) = pp
n−1

y(1), y(1) ∈ OK and moreover (y(1))p = y(0) (recall

that the multiplication in R (through the above mentioned bijection) is (st)(n) = (s)(n)(t)(n) and that OK is

normal). We construct in this way a compatible sequence y = (y(n))n ∈ R such that x = p̃p
n

y. �

The projection q̄n induces a ring homomorphism:

qn : Wn(R)→Wn(OK/pOK)

(s0, s1, ..., sn−1) 7→ (s
(n)
0 (modp), s

(n)
1 (modp), · · · , s(n)n−1(modp)).

Since qn is surjective, we have the isomorphism:

Wn(R)/ker(qn) ∼= Wn(OK/pOK) = Wn.

Denote by V : Wn(R)→Wn+1(R) the Verschiebung i.e.

V ((s0, s1, ..., sn−1)) = (0, s0, s1, ..., sn−1), (s0, s1, ..., sn−1) ∈Wn(R).

The following proposition describes the kernel of the map qn.

Proposition 3. The kernel of the ring homomorphism qn is the ideal generated by

{[p̃]p
n

, V ([p̃]p
n

), V 2([p̃]p
n

), · · · , V n−1([p̃]p
n

)}.

Proof. For n = 1 the statement is obvious by using Proposition 2. For n ≥ 2 we have the following commuta-
tive diagram:

0 // Wn−1(R)

qn−1

��

V ◦(∗)p // Wn(R)

qn

��

pr1◦(∗)1/p
n

// W1(R)

q1

��

// 0

0 // Wn−1(OK/pOK)
V // Wn(OK/pOK)

pr1 // W1(OK/pOK) // 0

where by pr1 we denote the projection map on the first component.
One can easily check the exactness of the second row so we omit it. For the first one, remark that (V ◦

(∗)p)((s0, s1, ..., sn−2)) = (0, sp0, s
p
1, ..., s

p
n−2), si ∈ R, 0 ≤ i ≤ n−2, and that (pr1◦(∗)1/p

n

)((0, sp0, s
p
1, ..., s

p
n−2)) =

pr1((0, s
1/pn−1

0 , s
1/pn−1

1 , ..., s
1/pn−1

n−2 )) = 0.
On the other hand, V ◦ (∗)p is injective since Verschiebung is injective and (∗)p is bijective due to the

fact that R is perfect. Similarly, pr1 ◦ (∗)1/pn remains surjective (for s0 ∈ W1(R), we have that (pr1 ◦
(∗)1/pn)((sp

n

0 , s1, ..., sn−1)) = s0, where (sp
n

0 , s1, ..., sn−1) ∈Wn(R)).

Take now (s0, s1, ..., sn−1) ∈ ker(pr1 ◦ (∗)1/pn) so s
1/pn

0 = 0. Since R is perfect it follows that s0 = 0 and

consequently (s0, s1, ..., sn−1) = (V ◦ (∗)p)((s1/p1 , s
1/p
2 , ..., s

1/p
n−1)) hence ker(pr1 ◦ (∗)1/pn) ⊆ Im(V ◦ (∗)p).

One obtains that the first row is exact. Note that the first square diagram is exact since, for a choice of
si ∈ R, 0 ≤ i ≤ n− 2, we have:
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(s0, s1, ..., sn−2)

qn−1

��

V ◦(∗)p // (0, sp0, s
p
1, ..., s

p
n−2)

qn

��
(s

(n−1)
0 (p), s

(n−1)
1 (p), ..., s

(n−1)
n−2 (p))

V // (0, s(n−1)0 (p), s
(n−1)
1 (p), ..., s

(n−1)
n−2 (p))

Also the second square diagram commutes since, for a choice of si ∈ R, 0 ≤ i ≤ n− 1, we have:

(s0, s1, ..., sn−1)

qn

��

pr1◦(∗)1/p
n

// (s1/p
n

0 )

q1

��
(s

(n)
0 (p), s

(n)
1 (p), ..., s

(n)
n−1(p))

pr1 // (s(n)0 (p))

One applies further the induction hypothesis at the level of kernels in the main diagram. �

4. Constructing the rings Amax,n

Definition 1. Let A be a p-adically complete OK-algebra and T a variable. Define

A{T} := lim←−A[T ]/pnA[T ].

Also define

Amax,n := Wn[δ]/(pδ − ξn)

Amax := lim←−
n

Amax,n.

Using these definitions, we then have

Amax = A+
inf

{[
ξ

p

]}
= A+

inf{δ}/(pδ − ξ)

=

∑
i≥0

aiδ
i such that ai ∈ A+

inf and ai
i→∞−→ 0

 .

i.e. we recover the ring introduced by Colmez in [Col].
Let A′max,n := Wn[δ]/(pδ − ξn+1). (By ξn+1 we mean here the projection on the first n components of this

vector namely prn(ξn+1) = (p1/p
n

,−1, 0, ..., 0)︸ ︷︷ ︸
n

). Note that we also have that:

V i([p̃]p
n

) = pi([p̃]p
n

)p
−i

= pi[p̃]p
n−i

= pi(ξ + p)p
n−i

= pi(p(δ + 1))p
n−i

≡pi+p
n−i

δp
n−i

≡ 0(modpnAmax),

where for the first equality one uses the Witt coordinatization ((r0, r1, ...) =
∑
pn[rp

−n

n ] (or one computes it
directly)).

By using Proposition 3 one obtains that ker(qn) ⊆ pnAmax. We will use this fact in the proof of the
following:

Proposition 4.

Amax/p
nAmax

∼= A′max,n.

Proof. Since ker(qn) ⊆ pnAmax, we obtain that:
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Amax

pnAmax
= Amax/(p

n, ker(qn))Amax =
A+

inf{δ}/(pδ − ξ)
(pn, ker(qn))(A+

inf{δ}/(pδ − ξ))

=
A+

inf{δ}/(pδ − ξ)
(pn, ker(qn), pδ − ξ)A+

inf{δ}/(pδ − ξ)
∼= A+

inf [δ]/(p
n, ker(qn), pδ − ξ)A+

inf [δ]

∼=
A+

inf [δ]/p
nA+

inf [δ]

(pn, ker(qn), pδ − ξ)A+
inf [δ]/p

nA+
inf [δ]

∼=
(A+

inf/p
nA+

inf)[δ]

(ker(qn), pδ − ξ(modpn))(A+
inf [δ]/p

nA+
inf [δ])

.

By using now the isomorphisms of rings

A+
inf/p

nA+
inf
∼= Wn(R) and A+

inf [δ]/p
nA+

inf [δ]
∼= (A+

inf/p
nA+

inf)[δ]

one obtains that

Amax/p
nAmax

∼= Wn(R)[δ]/(ker(qn), pδ − ξ(modpn)).

Since Wn(R)/ker(qn) ∼= Wn and qn(ξ(modpn)) = prn(ξn+1), qn induces the isomorphism

Wn(R)[δ]/(ker(qn), pδ − ξ(modpn)) ∼= Wn[δ]/(pδ − prn(ξn+1)) =: A′max,n.

We obtain that Amax/p
nAmax

∼= A′max,n. �

Remark 1. One can also prove the previous proposition by showing that there is a surjective map Amax �
A′max,n whose kernel is pnAmax. One can prove (see [Ga], Lemma 3.2.5) that for any positive integers m > n
there is an isomorphism of rings Amax/p

nAmax
∼= Amax,m/p

nAmax,m.
Note that, via the isomorphism Amax/p

nAmax
∼= A′max,n, we have a surjective map of rings:

q′n : Amax/p
nAmax → Amax,n

sending prn(ξn+1)→ ξn, induced by Frobenius on Wn and that we also have a map:

un : Amax,n+1 → Amax/p
nAmax

sending ξn+1 → prn(ξn+1), induced by the natural projection Wn+1 →Wn.

One further uses the rings Amax,n to construct the family of sheaves (A∇max,n)n≥1 and study their properties
(see [Ga] for details).

5. Computing the kernels of θn and θ

As we have seen in section 3, computing of the kernels of the map θ (w.r.p θn) amounts to the task of
computing Witt vectors of finite length in the Witt ring A+

inf (w.r.p Wn). In this section, we present two
approaches that will facilitate the computation task at hand.

First let us recall some basic facts about Witt vectors. The readers may consult [Se, chapter 2] for more
details on the topic. Let p be a prime and n a positive integer. The n’th Witt polynomial is by definition

Wn(X0, . . . , Xn) = Xpn

0 + pXpn−1

1 + · · ·+ pn−1Xp
n−1 + pnXn.(1)

There exist polynomials Sn, Pn in Z[X0, . . . , Xn, Y0, . . . Yn] satisfying

Wn(S0, . . . , Sn) = Wn(X0, . . . , Xn) +Wn(Y0, . . . , Yn)(2)

and

Wn(P0, . . . , Pn) = Wn(X0, . . . , Xn) ·Wn(Y0, . . . , Yn).(3)

Let A be a commutative ring. Suppose a = (a0, a1 . . .) and b = (b0, b1, . . .) are elements of AN, set

a + b = (S0(a,b), S1(a,b), . . .)

a · b = (P0(a,b), P1(a,b), . . .).
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p no. terms CPU time
11 2672 0.421s
19 22856 6.739s
23 48644 54.554s
29 121886 1102.459s
31 158812 2808.408s

Table 1. Polynomial S2 calculation for various p

The laws of composition defined above make AN into a commutative unitary ring (called the ring of Witt
vectors).

Thus in order to compute a + b (w.r.p. a · b), one has to compute Sn(a,b) (w.r.p. Pn(a,b)) for all n.
In what follows, we present two approaches for computing Sn (w.r.p. Pn). For the sake of clarity, we have
chosen to focus on the computation of Sn. The computation of Pn follows in a similar line. The first approach
computes the polynomials Sn explicitly, the evaluation Sn(a,b) is achieved by evaluating Sn at a,b. The
second approach is to use the recursion formula (6) (derived below) to compute Sn(a,b) directly from the
already computed values S0(a,b), S1(a,b), . . . , Sn−1(a,b).

5.1. Polynomial Evaluation. In the first place, we may use (2) to explicitly compute the polynomial func-
tions S0, S1, S2, . . . , Sn successively in Z[X0, . . . , Xn, Y0, . . . Yn]. Sn(a,b) is then computed by evaluating Sn
at a,b.

For n ≤ 2, we have

S0 = X0 + Y0, S1 = X1 + Y1 +
1

p
(Xp

0 + Y p0 − (X0 + Y0)p) ;(4)

and

S2 = X2 + Y2 +
1

p

(
Xp

1 + Y p1 −
(
X1 + Y1 +

Xp
0 + Y p0 − (X0 + Y0)p

p

)p)
+
Xp2

0 + Y p
2

0 − (X0 + Y0)p
2

p2
(5)

....

In expanded form, the polynomial S1 has p + 1 terms. As we can see, the number of terms for Sn when
n > 1 gets large very quickly. It turns out that even in the case of S2, the computing becomes inefficient for a
small p. Experimentally, we carried out the task of computing the polynomial S2 explicitly for various small
p. The calculations are done using MAPLE 12 on a Dell laptop with a Intel Duo CPU at 2.10GHz and 4 GB
RAM. The table 5.1 summaries the experiment results.

We have for each p recorded the number of monomials of S2 in expanded form and the CPU time it took
to complete the calculation.

5.2. Recursion Formula. Alternatively, we may derive using definition (1) a recursion formula. More ex-
plicitly, we have for n ≥ 1

Sn = (Xn + Yn) +
1

p
(Xp

n−1 + Y pn−1 − S
p
n−1) + · · ·+ 1

pn
(Xpn

0 + Y p
n

0 − Sp
n

0 ),(6)
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p CPU time
541 0.078s
1223 1.217s
2011 2.044s
3181 6.224s
4409 10.390s
5279 15.927s
6133 21.185s
7001 27.238s
7499 out of memory

Table 2. Recursive evaluation of S2

and

Pn =
1

pn

(
(Xpn

0 + · · · pnXn)(Y p
n

0 + · · ·+ pnYn)− (P p
n

0 + · · ·+ pn−1P pn−1

)
= (Xpn

0 Yn +Xpn−1

1 Y pn−1 + · · ·+XnY
pn

0 )

+
1

p
(Xpn

0 Y pn−1 + · · ·Xp
n−1Y

pn

0 )

...(7)

+
1

pn
(Xpn

0 Y p
n

0 )− 1

pn
P p

n

0 − · · · −
1

p
P pn−1

+ p(Xpn−1

1 Yn +Xpn−2

2 (Y pn−1 + pYn) + · · · ).

Example 5.1. As we have seen in Proposition 1, the kernel of θn is a principal ideal generated by ξn. Let

a = (p1/p
n

, 0, 0, . . . , 0) = (a0, a1, . . . , an)

b = (0,−1, 0, . . . , 0) = (b0, b1, . . . , bn).

Then using (6), for every n

ξn+1 := p̃n+1 − p = [p1/p
n

]− p = a+ b = (p1/p
n

,−1, 0, . . . , 0).

The recursion formula (6) can be coded. For instance, the reader will find in the appendix a MAPLE code
for the evaluation of Sn(a,b) with input Witt vectors a,b in a field characteristic p. Observe that in order
to compute Sj = Sj(a,b), one has to compute S0, S1, . . . , Sj−1 a priori. Therefore the complexity of the
algorithm is O(n2) for computing Sn. The table 5.2 summaries the experiment we carried out on the same
laptop with a Intel Duo CPU at 2.10GHz and 4GB RAM. We first randomly generate Witt vectors a,b. We
then evaluated S2(a,b) for various primes p using the MAPLE code provided in the appendix.

6. appendix

The following Maple code calculates Sn using formula (6).
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Algorithm 1 INPUT: prime p, positive integer n and Witt vectors a,b. Output: Sn(a,b).

1: S := proc(a, b, p, n)
2: if n = 1 then
3: (a1 + b1) mod p
4: else
5: add(pn−k−1 ∗ (ap

k

n−k + bp
k

n−k − S(a, b, p, n− k)p
k

, k = 1..n− 1))/pn−1 + (an + bn) mod p
6: end if ;

References

[AI] F. Andreatta, A. Iovita, Crystalline comparison isomorphisms for formal schemes, preprint available at URL:

www.mathstat.concordia.ca/faculty/iovita/research.html.
[BC] O. Brinon, B. Conrad, CMI summer school notes on p-adic Hodge Theory, September 2009, available at URL:

http://math.stanford.edu/∼ conrad/papers/notes.pdf.
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