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SOLVABILITY OF EXTENDED GENERAL MIXED

VARIATIONAL INEQUALITIES

MUHAMMAD ASLAM NOOR∗

Abstract. In this paper, we consider and study a new class of mixed vari-

ational inequality, which is called the extended general mixed variational in-
equality. We use the auxiliary principle technique to study the existence of a

solution of the extended general mixed variational inequality. Several special

cases are also discussed.

1. Introduction

Variational inequalities, which were introduced in 1960’s, are being used as a powerful tool to study

a wide class of problems, which arise in various branches of mathematical, financial, regional and

engineering sinces, see[1-27] and the references therein. Using the technique of Noor [16-21] and
Noor et al [22], one cam show that the minimum of the sum of differentiable hg-convex function

and a nondifferentiable hg-convex functions can be charactrized by a class of variational inequality.

Motivated by this result, we introduce a new class of mixed variational inequalities, which is calle
extended general mixed variational inequality involving four different operators. It is known

that it is very difficult to find the projection of the operator except in very special cases. To
overcome this drawback, on uses the auxiliary principle technique. This technique is mainly due

to Glowinski, Lions and Tremolieres [4]. This technique is more flexible and has been used to

develop several numerical methods for solving the variational inequalities and the equilibrium
problems. In this paper, we again use the auxiliary principle technique to study the existence

of a solution of the extended general mixed variational inequalities. Since the extended general

variational inequalities include various classes of variational inequalities and complementarity
problems as special cases, results proved in this paper continue to hold for these problems. Results

proved in this paper may be viewed as important and significant improvement of the previously

known results. It is interesting to explore the applications of these extended general variational
inequalities in mathematical and engineering sciences with new and novel aspects. This may lead

to new research in this field.

2. Preliminaries

Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and ‖.‖,
respectively. Let K be a nonempty closed and convex set in H. Let ϕ : H −→ R ∪ {∞} be a
continuous function.

For given nonlinear operators T, g, h : H → H, consider the problem of finding u ∈ H,h(u) ∈ K
such that

(2.1) 〈Tu, g(v)− h(u)〉+ ϕ(g(v))− ϕ(h(u)) ≥ 0, ∀v ∈ H : g(v) ∈ K.
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Inequality of type (2.1) is called the extended general mixed variational inequality involving four

operators.

We now show that the minimum of the sum of differentiable nonconvex function and a class of
differentiable nonconvex functions and nondifferentiable nonconvex function on the hg-convex set

K in H can be characterized by extended general variational inequality (2.1). For this purpose,

we recall the following well known concepts, see [2, 16-20].

Definition 2.1. Let K be any set in H. The set K is said to be hg-convex, if there exist functions

g, h : H −→ H such that

h(u) + t(g(v)− h(u)) ∈ K, ∀u, v ∈ H : h(u), g(v) ∈ K, t ∈ [0, 1].

Note that every convex set is hg-convex, but the converse is not true, see[2]. If g = h, then

the hg-convex set K is called the g-convex set, which was introduced by Youness [26]. See also
Cristescu and Lupsa [2] for its various extensions and generalization.

Definition 2.2. The function F : K −→ H is said to be hg-convex on the hg-convex set K, if
there exist two functions h, g such that

F (h(u) + t(g(v)− h(u))) ≤ (1− t)F (h(u)) + tF (g(v)).

∀u, v ∈ H : h(u), g(v) ∈ K, t ∈ [0, 1].

Clearly every convex function is hg-convex, but the converse is not true. For g = h, Definition

2.2 is due to Youness [26].

It is known [16-19] that the minimum of a differentiable hg-convex function on a hg-convex set

K in H can be characterized by the extended general variational inequality (2.1). One can prove

a similar result for the sum of nonconvex functions on the hg-convex set.

Lemma 2.3. Let F : K −→ H be a differentiable hg-convex function on the hg-convex set K.

Then u ∈ H : h(u) ∈ K is the minimum of the functional I[v] defind by (2.) on the hg-convex
set K, if and only if, u ∈ H : h(u) ∈ K satisfies the inequality

〈F ′(h(u)), g(v)− h(u)〉+ ϕ(g(v))− ϕ(h(u)) ≥ 0, ∀v ∈ H : g(v) ∈ K,(2.2)

where F ′(u) is the differential of F at u ∈ K.

Lemma 2.3 implies that hg-convex programming problem can be studied via the extended

general mixed variational inequality (2.1) with Tu = F ′(h(u)).

We now list some special cases of the extended general variational inequalities.

I. If g = h, then Problem(2.1) is equivalent to finding u ∈ H : g(u) ∈ K such that

〈Tu, g(v)− g(u)〉+ ϕ(g(v))− ϕ(g(u)) ≥ 0, ∀v ∈ H : g(v) ∈ K,(2.3)

which is known as general mixed variational inequality, introduced and studied by Noor [8]. It

turned out that odd order and nonsymmetric obstacle, free, moving, unilateral and equilibrium
problems arising in various branches of pure and applied sciences can be studied via general

variational inequalities.

II. For g ≡ I, the identity operator, the extended general variational inequality (2.1) collapses

to: find u ∈ H : h(u) ∈ K such that

〈Tu, v − h(u)〉+ ϕ(v)− ϕ(g(u)) ≥ 0, ∀v ∈ K,(2.4)

which is also called the general mixed variational inequality, see Noor et al [22].

III. For h = I, the identity operator, the extended general variational inequality (2.1) is
equivalent to finding u ∈ KI such that

〈Tu, g(v)− u〉+ ϕ(g(u))− ϕ(u) ≥ 0, ∀v ∈ H : g(v) ∈ K,(2.5)

which is also called the general mixed variational inequality involving two nonlinear operators
which was introduced and studied by Noor [18-20].

We would like to emphasize the fact that general variational inequalities (2.4), (2.5) and (2.6)
are quite different from each other and have different applications.

VI. For g = h = I, the identity operator, the extended general variational inequality (2.1) is

equivalent to finding u ∈ K such that

〈Tu, v − u〉+ ϕ(v)− ϕ(u) ≥ 0, ∀v ∈ K,(2.6)



MIXED VARIATIONAL INEQUALITIES 15

which is known as the classical mixed variational inequality. We would like to remark that, if

ϕ(.) =, then the extended general variational inequality () and its variant forms are exactly the

same as considered by Noor [5-21] and Stampacchia [27]. For the recent applications, numerical
methods, sensitivity analysis, dynamical systems and formulations of variational inequalities, see

[1-27] and the references therein. From the above discussion, it is clear that the extended general

mixed variational inequalities (2.1) is most general and includes several previously known classes
of variational inequalities and related optimization problems as special cases. These variational

inequalities have important applications in mathematical programming and engineering sciences.

We also need the following concepts and results.

Definition 2.4. For all u, v ∈ H, an operator T : H → H is said to be:

(i)strongly monotone, if there exists a constant α > 0 such that

〈Tu− Tv, u− v〉 ≥ α||u− v||2

(ii) Lipschitz continuous, if there exists a constant β > 0 such that

||Tu− Tv|| ≤ β||u− v||.

From (i) and (ii), it follows that α ≤ β.

Remark 2.5. It follows from the strongly monotonicity of the operator T, that

α‖u− v‖2 ≤ 〈Tu− Tv, u− v〉 ≤ ‖Tu− Tv‖‖u− v‖, ∀u, v ∈ H,

which implies that

‖Tu− Tv‖ ≥ α‖u− v‖, ∀u, v ∈ H.

This observation enables us to define the following concept.

Definition 2.6. The operator T is said to firmly expanding if

‖Tu− Tv‖ ≥ ‖u− v‖, ∀u, v ∈ H.

3. Main Results

In this Section, we use the auxiliary principle technique of Glowinski, Lions and Tremolieres

[4] to study the existence of a solution of the extended general mixed variational inequality (2.1).

Theorem 3.1. Let T be a strongly monotone with constant α > 0 and Lipschitz continuous with

constant β > 0. Let g be a strongly monotone and Lipschitz continuous operator with constants

σ > 0 and δ > 0 respectively. If the operator h is firmly expanding and there exists a constant
ρ > 0 such that

|ρ−
α

β2
| <

√
α2 − β2k(2− k)

β2
, α > β

√
k(2− k), k < 1,(3.1)

where

θ = k +
√

1− 2ρα+ ρ2β2(3.2)

k =
√

1− 2σ + δ2.(3.3)

then the extended general mixed variational inequality (2.1) has a unique solution.

Proof. We use the auxiliary principle technique to prove the existence of a solution of (2.1). For
a given u ∈ H : g(u) ∈ K satisfying the extended general mixed variational inequality (2.1), we

consider the problem of finding a solution w ∈ H : h(w) ∈ K such that

〈ρTu+ h(w)− g(u), g(v)− h(w)〉+ ρϕ(g(v))− ρϕ(h(u)) ≥ 0, ∀v ∈ H : g(v) ∈ K,(3.4)

where ρ > 0 is a constant.

The inequality of type (3.4) is called the auxiliary extended general mixed variational inequality
associated with the problem (2.1). It is clear that the relation (3.4) defines a mapping u −→ w. It

is enough to show that the mapping u −→ w defined by the relation (3.4) has a unique fixed point
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belonging to H satisfying the general variational inequality (2.1). Let w1 6= w2 be two solutions

of (2.13) related to u1, u2 ∈ H respectively. It is sufficient to show that for a well chosen ρ > 0,

‖w1 − w2‖ ≤ θ‖u1 − u2‖,

with 0 < θ < 1, where θ is independent of u1 and u2. Taking v = w2(respectively w1) in (3.4)

related to u1 (respectively u2), adding the resultant, we have

〈h(w1)− h(w2), h(w1)− h(w2)〉 ≤ 〈g(u1)− g(u2)− ρ(Tu1 − Tu2), h(w1)− h(w2)〉,

from which we have

‖h(w1)− h(w2)‖ ≤ ‖g(u1)− g(u2)− ρ(Tu1 − Tu2)‖
≤ ‖u1 − u2 − (g(u1)− g(u2))|+ ‖u1 − u2 − ρ(Tu1 − Tu2)‖.(3.5)

Since T is both strongly monotone and Lipschitz continuous operator with constants α > 0 and

β > 0 respectively, it follows that

‖u1 − u2 − ρ(Tu1 − Tu2)‖2 ≤ ‖u2 − u2‖2 − 2ρ〈u1 − u2, Tu1 − Tu2〉+ ρ2‖Tu1 − Tu2‖2

≤
(
1− 2ρα+ ρ2β2

)
‖u1 − u2‖2.(3.6)

In a similar way, using the strongly monotonicity with constant σ > 0 and Lipschitz continuity

with constant δ > 0, we have

‖u1 − u2 − (g(u1)− g(u2))‖ ≤
√

1− 2σ + δ2‖u1 − u2‖.(3.7)

From (3.5), (5.6), (3.7) and using the fact that the operator h is firmly expanding, we have

‖w1 − w2‖ ≤
{
k +

√
1− 2ρα+ ρ2β2

}
‖u1 − u2‖

= θ‖u1 − u2‖,

From (3.1) and (3.2), it follows that θ < 1 showing that the mapping defined by (3.4) has a fixed

point belonging to K, which is the solution of (2.1), the required result. � �
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